
Intel Architecture Software Developer’s Manual 44-69

F (F2XM1 — FMUL)

F (F2XM1 — FMUL) 44

44.1 F2XM1—Compute 2 x–1

Description
Calculates the exponential value of 2 to the power of the source operand minus 1. The source
operand is located in register ST(0) and the result is also stored in ST(0). The value of the source
operand must lie in the range –1.0 to +1.0. If the source value is outside this range, the result is
undefined.

The following table shows the results obtained when computing the exponential value of various
classes of numbers, assuming that neither overflow nor underflow occurs.

Values other than 2 can be exponentiated using the following formula:
xy = 2(y ∗ log2x)

Operation
ST(0) ← (2ST(0) − 1);

FPU Flags Affected
C1 Set to 0 if stack underflow occurred.

Indicates rounding direction if the inexact-result exception (#P) is generated: 0
= not roundup; 1 = roundup.

C0, C2, C3 Undefined.

Floating-Point Exceptions
#IS Stack underflow occurred.

#IA Source operand is an SNaN value or unsupported format.

#D Result is a denormal value.

#U Result is too small for destination format.

Opcode Instruction Description

D9 F0 F2XM1 Replace ST(0) with (2ST(0) – 1)

ST(0) SRC ST(0) DEST

−1.0 to −0 −0.5 to −0

−0 −0

+0 +0

+0 to +1.0 +0 to 1.0

44-70 Intel Architecture Software Developer’s Manual

F (F2XM1 — FMUL)

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions
#NM EM or TS in CR0 is set.

Real-Address Mode Exceptions
#NM EM or TS in CR0 is set.

Virtual-8086 Mode Exceptions
#NM EM or TS in CR0 is set.

44.2 FABS—Absolute Value

Description
Clears the sign bit of ST(0) to create the absolute value of the operand. The following table shows
the results obtained when creating the absolute value of various classes of numbers.

NOTE: F Means finite-real number.

Operation
ST(0) ← |ST(0)|

FPU Flags Affected
C1 Set to 0 if stack underflow occurred; otherwise, cleared to 0.

C0, C2, C3 Undefined.

Floating-Point Exceptions
#IS Stack underflow occurred.

Opcode Instruction Description

D9 E1 FABS Replace ST with its absolute value.

ST(0) SRC ST(0) DEST

-• +∞

−F +F

−0 +0

+0 +0

+F +F

+∞ +∞

NaN NaN

Intel Architecture Software Developer’s Manual 44-71

F (F2XM1 — FMUL)

Protected Mode Exceptions
#NM EM or TS in CR0 is set.

Real-Address Mode Exceptions
#NM EM or TS in CR0 is set.

Virtual-8086 Mode Exceptions
#NM EM or TS in CR0 is set.

44.3 FADD/FADDP/FIADD—Add

Description
Adds the destination and source operands and stores the sum in the destination location. The
destination operand is always an FPU register; the source operand can be a register or a memory
location. Source operands in memory can be in single-real, double-real, word-integer, or short-
integer formats.

The no-operand version of the instruction adds the contents of the ST(0) register to the ST(1)
register. The one-operand version adds the contents of a memory location (either a real or an
integer value) to the contents of the ST(0) register. The two-operand version, adds the contents of
the ST(0) register to the ST(i) register or vice versa. The value in ST(0) can be doubled by coding:

FADD ST(0), ST(0);

The FADDP instructions perform the additional operation of popping the FPU register stack after
storing the result. To pop the register stack, the processor marks the ST(0) register as empty and
increments the stack pointer (TOP) by 1. (The no-operand version of the floating-point add
instructions always results in the register stack being popped. In some assemblers, the mnemonic
for this instruction is FADD rather than FADDP.)

The FIADD instructions convert an integer source operand to extended-real format before
performing the addition.

The table on the following page shows the results obtained when adding various classes of
numbers, assuming that neither overflow nor underflow occurs.

Opcode Instruction Description

D8 /0 FADD m32 real Add m32real to ST(0) and store result in ST(0)

DC /0 FADD m64real Add m64real to ST(0) and store result in ST(0)

D8 C0+i FADD ST(0), ST(i) Add ST(0) to ST(i) and store result in ST(0)

DC C0+i FADD ST(i), ST(0) Add ST(i) to ST(0) and store result in ST(i)

DE C0+i FADDP ST(i), ST(0) Add ST(0) to ST(i), store result in ST(i), and pop the
register stack

DE C1 FADDP Add ST(0) to ST(1), store result in ST(1), and pop the
register stack

DA /0 FIADD m32int Add m32int to ST(0) and store result in ST(0)

DE /0 FIADD m16int Add m16int to ST(0) and store result in ST(0)

44-72 Intel Architecture Software Developer’s Manual

F (F2XM1 — FMUL)

When the sum of two operands with opposite signs is 0, the result is +0, except for the round
toward −∞ mode, in which case the result is −0. When the source operand is an integer 0, it is
treated as a +0.

When both operand are infinities of the same sign, the result is ∞ of the expected sign. If both
operands are infinities of opposite signs, an invalid-operation exception is generated.

.

NOTES:
1. FMeans finite-real number.
2. IMeans integer.
3. *Indicates floating-point invalid-arithmetic-operand (#IA) exception.

Operation
IF instruction is FIADD

THEN
DEST ← DEST + ConvertExtendedReal(SRC);

ELSE (* source operand is real number *)
DEST ← DEST + SRC;

FI;
IF instruction = FADDP

THEN
PopRegisterStack;

FI;

FPU Flags Affected
C1 Set to 0 if stack underflow occurred.

Indicates rounding direction if the inexact-result exception (#P) is generated: 0
= not roundup; 1 = roundup.

C0, C2, C3 Undefined.

Floating-Point Exceptions
#IS Stack underflow occurred.

#IA Operand is an SNaN value or unsupported format.

Operands are infinities of unlike sign.

#D Result is a denormal value.

#U Result is too small for destination format.

#O Result is too large for destination format.

#P Value cannot be represented exactly in destination format.

DEST

-• −F −0 +0 +F +∞ NaN

-∞ -∞ -∞ -∞ -∞ -∞ * NaN

−F or −I -∞ −F SRC SRC ±F or ±0 +∞ NaN

SRC −0 -∞ DEST −0 ±0 DEST +∞ NaN

+0 -∞ DEST ±0 +0 DEST +∞ NaN

+F or +I -∞ ±F or ±0 SRC SRC +F +∞ NaN

+∞ * +∞ +∞ +∞ +∞ +∞ NaN

NaN NaN NaN NaN NaN NaN NaN NaN

Intel Architecture Software Developer’s Manual 44-73

F (F2XM1 — FMUL)

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS

segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made
while the current privilege level is 3.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS

segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS

segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

44.4 FBLD—Load Binary Coded Decimal

Description
Converts the BCD source operand into extended-real format and pushes the value onto the FPU
stack. The source operand is loaded without rounding errors. The sign of the source operand is
preserved, including that of −0.

The packed BCD digits are assumed to be in the range 0 through 9; the instruction does not check
for invalid digits (AH through FH). Attempting to load an invalid encoding produces an undefined
result.

Operation
TOP ← TOP − 1;

Opcode Instruction Description

DF /4 FBLD m80 dec Convert BCD value to real and push onto the FPU stack.

44-74 Intel Architecture Software Developer’s Manual

F (F2XM1 — FMUL)

ST(0) ← ExtendedReal(SRC);

FPU Flags Affected
C1 Set to 1 if stack overflow occurred; otherwise, cleared to 0.

C0, C2, C3 Undefined.

Floating-Point Exceptions
#IS Stack overflow occurred.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS

segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made
while the current privilege level is 3.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS

segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS

segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

Intel Architecture Software Developer’s Manual 44-75

F (F2XM1 — FMUL)

44.5 FBSTP—Store BCD Integer and Pop

Description
Converts the value in the ST(0) register to an 18-digit packed BCD integer, stores the result in the
destination operand, and pops the register stack. If the source value is a non-integral value, it is
rounded to an integer value, according to rounding mode specified by the RC field of the FPU
control word. To pop the register stack, the processor marks the ST(0) register as empty and
increments the stack pointer (TOP) by 1.

The destination operand specifies the address where the first byte destination value is to be stored.
The BCD value (including its sign bit) requires 10 bytes of space in memory.

The following table shows the results obtained when storing various classes of numbers in packed
BCD format.

NOTES:
F Means finite-real number.
D Means packed-BCD number.
* Indicates floating-point invalid-operation (#IA) exception.
** ±0 or ±1, depending on the rounding mode.

If the source value is too large for the destination format and the invalid-operation exception is not
masked, an invalid-operation exception is generated and no value is stored in the destination
operand. If the invalid-operation exception is masked, the packed BCD indefinite value is stored in
memory.

If the source value is a quiet NaN, an invalid-operation exception is generated. Quiet NaNs do not
normally cause this exception to be generated.

Operation
DEST ← BCD(ST(0));
PopRegisterStack;

Opcode Instruction Description

DF /6 FBSTP m80bcd Store ST(0) in m80bcd and pop ST(0).

ST(0) DEST

-∞ *

−F < −1 −D

−1 < −F < −0 **

−0 −0

+0 +0

+0 < +F < +1 **

+F > +1 +D

+∞ *

NaN *

44-76 Intel Architecture Software Developer’s Manual

F (F2XM1 — FMUL)

FPU Flags Affected
C1 Set to 0 if stack underflow occurred.

Indicates rounding direction if the inexact exception (#P) is generated: 0 =
not roundup; 1 = roundup.

C0, C2, C3 Undefined.

Floating-Point Exceptions
#IS Stack underflow occurred.

#IA Source operand is empty; contains a NaN, ±∞, or unsupported format; or
contains value that exceeds 18 BCD digits in length.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions
#GP(0) If a segment register is being loaded with a segment selector that points to a

nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or GS
segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made
while the current privilege level is 3.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS

segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS

segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

Intel Architecture Software Developer’s Manual 44-77

F (F2XM1 — FMUL)

44.6 FCHS—Change Sign

Description
Complements the sign bit of ST(0). This operation changes a positive value into a negative value of
equal magnitude or vice versa. The following table shows the results obtained when changing the
sign of various classes of numbers.

NOTE: F Means finite-real number.

Operation
SignBit(ST(0)) ← NOT (SignBit(ST(0)))

FPU Flags Affected
C1 Set to 0 if stack underflow occurred; otherwise, cleared to 0.

C0, C2, C3 Undefined.

Floating-Point Exceptions
#IS Stack underflow occurred.

Protected Mode Exceptions
#NM EM or TS in CR0 is set.

Real-Address Mode Exceptions
#NM EM or TS in CR0 is set.

Virtual-8086 Mode Exceptions
#NM EM or TS in CR0 is set.

Opcode Instruction Description

D9 E0 FCHS Complements sign of ST(0)

ST(0) SRC ST(0) DEST

-• +∞

−F +F

−0 +0

+0 −0

+F −F

+∞ -•

NaN NaN

44-78 Intel Architecture Software Developer’s Manual

F (F2XM1 — FMUL)

44.7 FCLEX/FNCLEX—Clear Exceptions

NOTE: * See “Intel Architecture Compatibility” below.

Description
Clears the floating-point exception flags (PE, UE, OE, ZE, DE, and IE), the exception summary
status flag (ES), the stack fault flag (SF), and the busy flag (B) in the FPU status word. The FCLEX
instruction checks for and handles any pending unmasked floating-point exceptions before clearing
the exception flags; the FNCLEX instruction does not.

Intel Architecture Compatibility
When operating a Pentium or Intel486 processor in MS-DOS compatibility mode, it is possible
(under unusual circumstances) for an FNCLEX instruction to be interrupted prior to being
executed to handle a pending FPU exception. See the section titled “No-Wait FPU Instructions Can
Get FPU Interrupt in Window”, for a description of these circumstances. An FNCLEX instruction
cannot be interrupted in this way on a Pentium Pro processor.

Operation
FPUStatusWord[0..7] ← 0;
FPUStatusWord[15] ← 0;

FPU Flags Affected
The PE, UE, OE, ZE, DE, IE, ES, SF, and B flags in the FPU status word are cleared. The C0, C1,
C2, and C3 flags are undefined.

Floating-Point Exceptions
None.

Protected Mode Exceptions
#NM EM or TS in CR0 is set.

Real-Address Mode Exceptions
#NM EM or TS in CR0 is set.

Virtual-8086 Mode Exceptions
#NM EM or TS in CR0 is set.

Opcode Instruction Description

9B DB E2 FCLEX Clear floating-point exception flags after checking for
pending unmasked floating-point exceptions.

DB E2 FNCLEX* Clear floating-point exception flags without checking for
pending unmasked floating-point exceptions.

Intel Architecture Software Developer’s Manual 44-79

F (F2XM1 — FMUL)

44.8 FCMOVcc—Floating-Point Conditional Move

Description
Tests the status flags in the EFLAGS register and moves the source operand (second operand) to
the destination operand (first operand) if the given test condition is true. The conditions for each
mnemonic are given in the Description column above and in “Conditional Jump Instructions”. The
source operand is always in the ST(i) register and the destination operand is always ST(0).

The FCMOVcc instructions are useful for optimizing small IF constructions. They also help
eliminate branching overhead for IF operations and the possibility of branch mispredictions by the
processor.

A processor may not support the FCMOVcc instructions. Software can check if the FCMOVcc
instructions are supported by checking the processor’s feature information with the CPUID
instruction (see “CPUID—CPU Identification” in this chapter). If both the CMOV and FPU feature
bits are set, the FCMOVcc instructions are supported.

Intel Architecture Compatibility
The FCMOVcc instructions were introduced to the Intel Architecture in the Pentium Pro processor
family and is not available in earlier Intel Architecture processors.

Operation
IF condition TRUE

ST(0) ← ST(i)
FI;

FPU Flags Affected
C1 Set to 0 if stack underflow occurred.

C0, C2, C3 Undefined.

Floating-Point Exceptions
#IS Stack underflow occurred.

Integer Flags Affected
None.

Opcode Instruction Description

DA C0+i FCMOVB ST(0), ST(i) Move if below (CF=1)

DA C8+i FCMOVE ST(0), ST(i) Move if equal (ZF=1)

DA D0+i FCMOVBE ST(0), ST(i) Move if below or equal (CF=1 or ZF=1)

DA D8+i FCMOVU ST(0), ST(i) Move if unordered (PF=1)

DB C0+i FCMOVNB ST(0), ST(i) Move if not below (CF=0)

DB C8+i FCMOVNE ST(0), ST(i) Move if not equal (ZF=0)

DB D0+i FCMOVNBE ST(0), ST(i) Move if not below or equal (CF=0 and ZF=0)

DB D8+i FCMOVNU ST(0), ST(i) Move if not unordered (PF=0)

44-80 Intel Architecture Software Developer’s Manual

F (F2XM1 — FMUL)

Protected Mode Exceptions
#NM EM or TS in CR0 is set.

Real-Address Mode Exceptions
#NM EM or TS in CR0 is set.

Virtual-8086 Mode Exceptions
#NM EM or TS in CR0 is set.

44.9 FCOM/FCOMP/FCOMPP—Compare Real

Description
Compares the contents of register ST(0) and source value and sets condition code flags C0, C2, and
C3 in the FPU status word according to the results (see the table below). The source operand can be
a data register or a memory location. If no source operand is given, the value in ST(0) is compared
with the value in ST(1). The sign of zero is ignored, so that –0.0 = +0.0.

NOTE: *Flags not set if unmasked invalid-arithmetic-operand (#IA) exception is generated.

This instruction checks the class of the numbers being compared (see “FXAM—Examine” in this
chapter). If either operand is a NaN or is in an unsupported format, an invalid-arithmetic-operand
exception (#IA) is raised and, if the exception is masked, the condition flags are set to “unordered.”
If the invalid-arithmetic-operand exception is unmasked, the condition code flags are not set.

The FCOMP instruction pops the register stack following the comparison operation and the
FCOMPP instruction pops the register stack twice following the comparison operation. To pop the
register stack, the processor marks the ST(0) register as empty and increments the stack pointer
(TOP) by 1.

Opcode Instruction Description

D8 /2 FCOM m32real Compare ST(0) with m32real.

DC /2 FCOM m64real Compare ST(0) with m64real.

D8 D0+i FCOM ST(i) Compare ST(0) with ST(i).

D8 D1 FCOM Compare ST(0) with ST(1).

D8 /3 FCOMP m32real Compare ST(0) with m32real and pop register stack.

DC /3 FCOMP m64real Compare ST(0) with m64real and pop register stack.

D8 D8+i FCOMP ST(i) Compare ST(0) with ST(i) and pop register stack.

D8 D9 FCOMP Compare ST(0) with ST(1) and pop register stack.

DE D9 FCOMPP Compare ST(0) with ST(1) and pop register stack twice.

Condition C3 C2 C0

ST(0) > SRC 0 0 0

ST(0) < SRC 0 0 1

ST(0) = SRC 1 0 0

Unordered* 1 1 1

Intel Architecture Software Developer’s Manual 44-81

F (F2XM1 — FMUL)

The FCOM instructions perform the same operation as the FUCOM instructions. The only
difference is how they handle QNaN operands. The FCOM instructions raise an invalid-arithmetic-
operand exception (#IA) when either or both of the operands is a NaN value or is in an unsupported
format. The FUCOM instructions perform the same operation as the FCOM instructions, except
that they do not generate an invalid-arithmetic-operand exception for QNaNs.

Operation
CASE (relation of operands) OF

ST > SRC: C3, C2, C0 ← 000;
ST < SRC: C3, C2, C0 ← 001;
ST = SRC: C3, C2, C0 ← 100;

ESAC;
IF ST(0) or SRC = NaN or unsupported format

THEN
#IA
IF FPUControlWord.IM = 1

THEN
C3, C2, C0 ← 111;

FI;
FI;
IF instruction = FCOMP

THEN
PopRegisterStack;

FI;
IF instruction = FCOMPP

THEN
PopRegisterStack;
PopRegisterStack;

FI;

FPU Flags Affected
C1 Set to 0 if stack underflow occurred; otherwise, cleared to 0.

C0, C2, C3 See table on previous page.

Floating-Point Exceptions
#IS Stack underflow occurred.

#IA One or both operands are NaN values or have unsupported formats.

Register is marked empty.

#D One or both operands are denormal values.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS

segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made
while the current privilege level is 3.

44-82 Intel Architecture Software Developer’s Manual

F (F2XM1 — FMUL)

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS

segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS

segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

44.10 FCOMI/FCOMIP/ FUCOMI/FUCOMIP—Compare Real
and Set EFLAGS

Description
Compares the contents of register ST(0) and ST(i) and sets the status flags ZF, PF, and CF in the
EFLAGS register according to the results (see the table below). The sign of zero is ignored for
comparisons, so that –0.0 = +0.0.

NOTE: *Flags not set if unmasked invalid-arithmetic-operand (#IA) exception is generated.

Opcode Instruction Description

DB F0+i FCOMI ST, ST(i) Compare ST(0) with ST(i) and set status flags accordingly

DF F0+i FCOMIP ST, ST(i) Compare ST(0) with ST(i), set status flags accordingly, and
pop register stack

DB E8+i FUCOMI ST, ST(i) Compare ST(0) with ST(i), check for ordered values, and
set status flags accordingly

DF E8+i FUCOMIP ST, ST(i) Compare ST(0) with ST(i), check for ordered values, set
status flags accordingly, and pop register stack

Comparison Results ZF PF CF

ST0 > ST(i) 0 0 0

ST0 < ST(i) 0 0 1

ST0 = ST(i) 1 0 0

Unordered* 1 1 1

Intel Architecture Software Developer’s Manual 44-83

F (F2XM1 — FMUL)

The FCOMI/FCOMIP instructions perform the same operation as the FUCOMI/FUCOMIP
instructions. The only difference is how they handle QNaN operands. The FCOMI/FCOMIP
instructions set the status flags to “unordered” and generate an invalid-arithmetic-operand
exception (#IA) when either or both of the operands is a NaN value (SNaN or QNaN) or is in an
unsupported format.

The FUCOMI/FUCOMIP instructions perform the same operation as the FCOMI/FCOMIP
instructions, except that they do not generate an invalid-arithmetic-operand exception for QNaNs.
See “FXAM—Examine” in this chapter for additional information on unordered comparisons.

If invalid-operation exception is unmasked, the status flags are not set if the invalid-arithmetic-
operand exception is generated.

The FCOMIP and FUCOMIP instructions also pop the register stack following the comparison
operation. To pop the register stack, the processor marks the ST(0) register as empty and
increments the stack pointer (TOP) by 1.

Intel Architecture Compatibility
The FCOMI/FCOMIP/FUCOMI/FUCOMIP instructions were introduced to the Intel Architecture
in the Pentium Pro processor family and are not available in earlier Intel Architecture processors.

Operation
CASE (relation of operands) OF

ST(0) > ST(i): ZF, PF, CF ← 000;
ST(0) < ST(i): ZF, PF, CF ← 001;
ST(0) = ST(i): ZF, PF, CF ← 100;

ESAC;
IF instruction is FCOMI or FCOMIP

THEN
IF ST(0) or ST(i) = NaN or unsupported format

THEN
#IA
IF FPUControlWord.IM = 1

THEN
ZF, PF, CF ← 111;

FI;
FI;

FI;
IF instruction is FUCOMI or FUCOMIP

THEN
IF ST(0) or ST(i) = QNaN, but not SNaN or unsupported format

THEN
ZF, PF, CF ← 111;

ELSE (* ST(0) or ST(i) is SNaN or unsupported format *)
 #IA;
IF FPUControlWord.IM = 1

THEN
ZF, PF, CF ← 111;

FI;
FI;

FI;
IF instruction is FCOMIP or FUCOMIP

THEN
PopRegisterStack;

FI;

FPU Flags Affected
C1 Set to 0 if stack underflow occurred; otherwise, cleared to 0.

C0, C2, C3 Not affected.

Floating-Point Exceptions
#IS Stack underflow occurred.

44-84 Intel Architecture Software Developer’s Manual

F (F2XM1 — FMUL)

#IA (FCOMI or FCOMIP instruction) One or both operands are NaN values or have
unsupported formats.

(FUCOMI or FUCOMIP instruction) One or both operands are SNaN values
(but not QNaNs) or have undefined formats. Detection of a QNaN value does
not raise an invalid-operand exception.

Protected Mode Exceptions
#NM EM or TS in CR0 is set.

Real-Address Mode Exceptions
#NM EM or TS in CR0 is set.

Virtual-8086 Mode Exceptions
#NM EM or TS in CR0 is set.

44.11 FCOS—Cosine

Description
Calculates the cosine of the source operand in register ST(0) and stores the result in ST(0). The
source operand must be given in radians and must be within the range −263 to +263. The following
table shows the results obtained when taking the cosine of various classes of numbers, assuming
that neither overflow nor underflow occurs.

F Means finite-real number.
* Indicates floating-point invalid-arithmetic-operand (#IA) exception.

If the source operand is outside the acceptable range, the C2 flag in the FPU status word is set, and
the value in register ST(0) remains unchanged. The instruction does not raise an exception when
the source operand is out of range. It is up to the program to check the C2 flag for out-of-range
conditions. Source values outside the range −263 to +263 can be reduced to the range of the

Opcode Instruction Description

D9 FF FCOS Replace ST(0) with its cosine

ST(0) SRC ST(0) DEST

-• *

−F −1 to +1

−0 +1

+0 +1

+F −1 to +1

+∞ *

NaN NaN

Intel Architecture Software Developer’s Manual 44-85

F (F2XM1 — FMUL)

instruction by subtracting an appropriate integer multiple of 2π or by using the FPREM instruction
with a divisor of 2π. See “Pi”, for a discussion of the proper value to use for π in performing such
reductions.

Operation
IF |ST(0)| < 263
THEN

C2 ← 0;
ST(0) ← cosine(ST(0));

ELSE (*source operand is out-of-range *)
C2 ← 1;

FI;

FPU Flags Affected
C1 Set to 0 if stack underflow occurred.

Indicates rounding direction if the inexact-result exception (#P) is generated: 0
= not roundup; 1 = roundup.

Undefined if C2 is 1.

C2 Set to 1 if source operand is outside the range −263 to +263; otherwise, cleared to
0.

C0, C3 Undefined.

Floating-Point Exceptions
#IS Stack underflow occurred.

#IA Source operand is an SNaN value, ∞, or unsupported format.

#D Result is a denormal value.

#U Result is too small for destination format.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions
#NM EM or TS in CR0 is set.

Real-Address Mode Exceptions
#NM EM or TS in CR0 is set.

Virtual-8086 Mode Exceptions
#NM EM or TS in CR0 is set.

44-86 Intel Architecture Software Developer’s Manual

F (F2XM1 — FMUL)

44.12 FDECSTP—Decrement Stack-Top Pointer

Description
Subtracts one from the TOP field of the FPU status word (decrements the top-of-stack pointer). If
the TOP field contains a 0, it is set to 7. The effect of this instruction is to rotate the stack by one
position. The contents of the FPU data registers and tag register are not affected.

Operation
IF TOP = 0

THEN TOP ← 7;
ELSE TOP ← TOP – 1;

FI;

FPU Flags Affected
The C1 flag is set to 0; otherwise, cleared to 0. The C0, C2, and C3 flags are undefined.

Floating-Point Exceptions
None.

Protected Mode Exceptions
#NM EM or TS in CR0 is set.

Real-Address Mode Exceptions
#NM EM or TS in CR0 is set.

Virtual-8086 Mode Exceptions
#NM EM or TS in CR0 is set.

44.13 FDIV/FDIVP/FIDIV—Divide

Opcode Instruction Description

D9 F6 FDECSTP Decrement TOP field in FPU status word.

Opcode Instruction Description

D8 /6 FDIV m32real Divide ST(0) by m32real and store result in ST(0)

DC /6 FDIV m64real Divide ST(0) by m64real and store result in ST(0)

D8 F0+i FDIV ST(0), ST(i) Divide ST(0) by ST(i) and store result in ST(0)

DC F8+i FDIV ST(i), ST(0) Divide ST(i) by ST(0) and store result in ST(i)

DE F8+i FDIVP ST(i), ST(0) Divide ST(i) by ST(0), store result in ST(i), and pop the
register stack

DE F9 FDIVP Divide ST(1) by ST(0), store result in ST(1), and pop the
register stack

DA /6 FIDIV m32int Divide ST(0) by m32int and store result in ST(0)

DE /6 FIDIV m16int Divide ST(0) by m64int and store result in ST(0)

Intel Architecture Software Developer’s Manual 44-87

F (F2XM1 — FMUL)

Description
Divides the destination operand by the source operand and stores the result in the destination
location. The destination operand (dividend) is always in an FPU register; the source operand
(divisor) can be a register or a memory location. Source operands in memory can be in single-real,
double-real, word-integer, or short-integer formats.

The no-operand version of the instruction divides the contents of the ST(1) register by the contents
of the ST(0) register. The one-operand version divides the contents of the ST(0) register by the
contents of a memory location (either a real or an integer value). The two-operand version, divides
the contents of the ST(0) register by the contents of the ST(i) register or vice versa.

The FDIVP instructions perform the additional operation of popping the FPU register stack after
storing the result. To pop the register stack, the processor marks the ST(0) register as empty and
increments the stack pointer (TOP) by 1. The no-operand version of the floating-point divide
instructions always results in the register stack being popped. In some assemblers, the mnemonic
for this instruction is FDIV rather than FDIVP.

The FIDIV instructions convert an integer source operand to extended-real format before
performing the division. When the source operand is an integer 0, it is treated as a +0.

If an unmasked divide by zero exception (#Z) is generated, no result is stored; if the exception is
masked, an ∞ of the appropriate sign is stored in the destination operand.

The following table shows the results obtained when dividing various classes of numbers,
assuming that neither overflow nor underflow occurs.

F Means finite-real number.
I Means integer.
* Indicates floating-point invalid-arithmetic-operand (#IA) exception.
** Indicates floating-point zero-divide (#Z) exception.

Operation
IF SRC = 0

THEN
#Z

ELSE
IF instruction is FIDIV

THEN
DEST ← DEST / ConvertExtendedReal(SRC);

ELSE (* source operand is real number *)
DEST ← DEST / SRC;

DEST

-• −F −0 +0 +F +∞ NaN

-∞ * +0 +0 −0 −0 * NaN

−F +∞ +F +0 −0 −F -• NaN

−I +∞ +F +0 −0 −F -• NaN

SRC −0 +∞ ** * * ** -• NaN

+0 -• ** * * ** +∞ NaN

+I -• −F −0 +0 +F +∞ NaN

+F -• −F −0 +0 +F +∞ NaN

+∞ * −0 −0 +0 +0 * NaN

NaN NaN NaN NaN NaN NaN NaN NaN

44-88 Intel Architecture Software Developer’s Manual

F (F2XM1 — FMUL)

FI;
FI;
IF instruction = FDIVP

THEN
PopRegisterStack

FI;

FPU Flags Affected
C1 Set to 0 if stack underflow occurred.

Indicates rounding direction if the inexact-result exception (#P) is generated: 0
= not roundup; 1 = roundup.

C0, C2, C3 Undefined.

Floating-Point Exceptions
#IS Stack underflow occurred.

#IA Operand is an SNaN value or unsupported format.

±∞ / ±∞; ±0 / ±0

#D Result is a denormal value.

#Z DEST / ±0, where DEST is not equal to ±0.

#U Result is too small for destination format.

#O Result is too large for destination format.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS

segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made
while the current privilege level is 3.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS

segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS

segment limit.

Intel Architecture Software Developer’s Manual 44-89

F (F2XM1 — FMUL)

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

44.14 FDIVR/FDIVRP/FIDIVR—Reverse Divide

Description
Divides the source operand by the destination operand and stores the result in the destination
location. The destination operand (divisor) is always in an FPU register; the source operand
(dividend) can be a register or a memory location. Source operands in memory can be in single-
real, double-real, word-integer, or short-integer formats.

These instructions perform the reverse operations of the FDIV, FDIVP, and FIDIV instructions.
They are provided to support more efficient coding.

The no-operand version of the instruction divides the contents of the ST(0) register by the contents
of the ST(1) register. The one-operand version divides the contents of a memory location (either a
real or an integer value) by the contents of the ST(0) register. The two-operand version, divides the
contents of the ST(i) register by the contents of the ST(0) register or vice versa.

The FDIVRP instructions perform the additional operation of popping the FPU register stack after
storing the result. To pop the register stack, the processor marks the ST(0) register as empty and
increments the stack pointer (TOP) by 1. The no-operand version of the floating-point divide
instructions always results in the register stack being popped. In some assemblers, the mnemonic
for this instruction is FDIVR rather than FDIVRP.

The FIDIVR instructions convert an integer source operand to extended-real format before
performing the division.

If an unmasked divide by zero exception (#Z) is generated, no result is stored; if the exception is
masked, an ∞ of the appropriate sign is stored in the destination operand.

The following table shows the results obtained when dividing various classes of numbers,
assuming that neither overflow nor underflow occurs.

Opcode Instruction Description

D8 /7 FDIVR m32real Divide m32real by ST(0) and store result in ST(0)

DC /7 FDIVR m64real Divide m64real by ST(0) and store result in ST(0)

D8 F8+i FDIVR ST(0), ST(i) Divide ST(i) by ST(0) and store result in ST(0)

DC F0+i FDIVR ST(i), ST(0) Divide ST(0) by ST(i) and store result in ST(i)

DE F0+i FDIVRP ST(i), ST(0) Divide ST(0) by ST(i), store result in ST(i), and pop the
register stack

DE F1 FDIVRP Divide ST(0) by ST(1), store result in ST(1), and pop the
register stack

DA /7 FIDIVR m32int Divide m32int by ST(0) and store result in ST(0)

DE /7 FIDIVR m16int Divide m64int by ST(0) and store result in ST(0)

44-90 Intel Architecture Software Developer’s Manual

F (F2XM1 — FMUL)

NOTES:
1. FMeans finite-real number.
2. IMeans integer.
3. *Indicates floating-point invalid-arithmetic-operand (#IA) exception.
4. ** Indicates floating-point zero-divide (#Z) exception.

When the source operand is an integer 0, it is treated as a +0.

Operation
IF DEST = 0

THEN
#Z

ELSE
IF instruction is FIDIVR

THEN
DEST ← ConvertExtendedReal(SRC) / DEST;

ELSE (* source operand is real number *)
DEST ← SRC / DEST;

FI;
FI;
IF instruction = FDIVRP

THEN
PopRegisterStack

FI;

FPU Flags Affected
C1 Set to 0 if stack underflow occurred.

Indicates rounding direction if the inexact-result exception (#P) is generated: 0
= not roundup; 1 = roundup.

C0, C2, C3 Undefined.

Floating-Point Exceptions
#IS Stack underflow occurred.

#IA Operand is an SNaN value or unsupported format.

±∞ / ±∞; ±0 / ±0

#D Result is a denormal value.

#Z SRC / ±0, where SRC is not equal to ±0.

DEST

-• −F −0 +0 +F +∞ NaN

-• * +∞ +∞ -• -• * NaN

SRC −F +0 +F ** ** -F −0 NaN

−I +0 +F ** ** -F −0 NaN

−0 +0 +0 * * −0 −0 NaN

+0 −0 −0 * * +0 +0 NaN

+I −0 -F ** ** +F +0 NaN

+F −0 -F ** ** +F +0 NaN

+∞ * -• -• +∞ +∞ * NaN

NaN NaN NaN NaN NaN NaN NaN NaN

Intel Architecture Software Developer’s Manual 44-91

F (F2XM1 — FMUL)

#U Result is too small for destination format.

#O Result is too large for destination format.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS

segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made
while the current privilege level is 3.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS

segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS

segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

44.15 FFREE—Free Floating-Point Register

Description
Sets the tag in the FPU tag register associated with register ST(i) to empty (11B). The contents of
ST(i) and the FPU stack-top pointer (TOP) are not affected.

Opcode Instruction Description

DD C0+i FFREE ST(i) Sets tag for ST(i) to empty

44-92 Intel Architecture Software Developer’s Manual

F (F2XM1 — FMUL)

Operation
TAG(i) ← 11B;

FPU Flags Affected
C0, C1, C2, C3 undefined.

Floating-Point Exceptions
None.

Protected Mode Exceptions
#NM EM or TS in CR0 is set.

Real-Address Mode Exceptions
#NM EM or TS in CR0 is set.

Virtual-8086 Mode Exceptions
#NM EM or TS in CR0 is set.

44.16 FICOM/FICOMP—Compare Integer

Description
Compares the value in ST(0) with an integer source operand and sets the condition code flags C0,
C2, and C3 in the FPU status word according to the results (see table below). The integer value is
converted to extended-real format before the comparison is made.

These instructions perform an “unordered comparison.” An unordered comparison also checks the
class of the numbers being compared (see “FXAM—Examine” in this chapter). If either operand is
a NaN or is in an undefined format, the condition flags are set to “unordered.”

The sign of zero is ignored, so that –0.0 = +0.0.

Opcode Instruction Description

DE /2 FICOM m16int Compare ST(0) with m16int

DA /2 FICOM m32int Compare ST(0) with m32int

DE /3 FICOMP m16int Compare ST(0) with m16int and pop stack register

DA /3 FICOMP m32int Compare ST(0) with m32int and pop stack register

Condition C3 C2 C0

ST(0) > SRC 0 0 0

ST(0) < SRC 0 0 1

ST(0) = SRC 1 0 0

Unordered 1 1 1

Intel Architecture Software Developer’s Manual 44-93

F (F2XM1 — FMUL)

The FICOMP instructions pop the register stack following the comparison. To pop the register
stack, the processor marks the ST(0) register empty and increments the stack pointer (TOP) by 1.

Operation
CASE (relation of operands) OF

ST(0) > SRC: C3, C2, C0 ← 000;
ST(0) < SRC: C3, C2, C0 ← 001;
ST(0) = SRC: C3, C2, C0 ← 100;
Unordered: C3, C2, C0 ← 111;

ESAC;
IF instruction = FICOMP

THEN
PopRegisterStack;

FI;

FPU Flags Affected
C1 Set to 0 if stack underflow occurred; otherwise, set to 0.

C0, C2, C3 See table on previous page.

Floating-Point Exceptions
#IS Stack underflow occurred.

#IA One or both operands are NaN values or have unsupported formats.

#D One or both operands are denormal values.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS

segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made
while the current privilege level is 3.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS

segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS

segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

44-94 Intel Architecture Software Developer’s Manual

F (F2XM1 — FMUL)

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

44.17 FILD—Load Integer

Description
Converts the signed-integer source operand into extended-real format and pushes the value onto
the FPU register stack. The source operand can be a word, short, or long integer value. It is loaded
without rounding errors. The sign of the source operand is preserved.

Operation
TOP ← TOP − 1;
ST(0) ← ExtendedReal(SRC);

FPU Flags Affected
C1 Set to 1 if stack overflow occurred; cleared to 0 otherwise.

C0, C2, C3 Undefined.

Floating-Point Exceptions
#IS Stack overflow occurred.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS

segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made
while the current privilege level is 3.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS

segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Opcode Instruction Description

DF /0 FILD m16int Push m16int onto the FPU register stack.

DB /0 FILD m32int Push m32int onto the FPU register stack.

DF /5 FILD m64int Push m64int onto the FPU register stack.

Intel Architecture Software Developer’s Manual 44-95

F (F2XM1 — FMUL)

#NM EM or TS in CR0 is set.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS

segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

44.18 FINCSTP—Increment Stack-Top Pointer

Description
Adds one to the TOP field of the FPU status word (increments the top-of-stack pointer). If the TOP
field contains a 7, it is set to 0. The effect of this instruction is to rotate the stack by one position.
The contents of the FPU data registers and tag register are not affected. This operation is not
equivalent to popping the stack, because the tag for the previous top-of-stack register is not marked
empty.

Operation
IF TOP = 7

THEN TOP ← 0;
ELSE TOP ← TOP + 1;

FI;

FPU Flags Affected
The C1 flag is set to 0; otherwise, cleared to 0. The C0, C2, and C3 flags are undefined.

Floating-Point Exceptions
None.

Protected Mode Exceptions
#NM EM or TS in CR0 is set.

Real-Address Mode Exceptions
#NM EM or TS in CR0 is set.

Virtual-8086 Mode Exceptions
#NM EM or TS in CR0 is set.

Opcode Instruction Description

D9 F7 FINCSTP Increment the TOP field in the FPU status register

44-96 Intel Architecture Software Developer’s Manual

F (F2XM1 — FMUL)

44.19 FINIT/FNINIT—Initialize Floating-Point Unit

NOTE: * See “Intel Architecture Compatibility” below.

Description
Sets the FPU control, status, tag, instruction pointer, and data pointer registers to their default
states. The FPU control word is set to 037FH (round to nearest, all exceptions masked, 64-bit
precision). The status word is cleared (no exception flags set, TOP is set to 0). The data registers in
the register stack are left unchanged, but they are all tagged as empty (11B). Both the instruction
and data pointers are cleared.

The FINIT instruction checks for and handles any pending unmasked floating-point exceptions
before performing the initialization; the FNINIT instruction does not.

Intel Architecture Compatibility
When operating a Pentium or Intel486 processor in MS-DOS compatibility mode, it is possible
(under unusual circumstances) for an FNINIT instruction to be interrupted prior to being executed
to handle a pending FPU exception. See the section titled “No-Wait FPU Instructions Can Get FPU
Interrupt in Window”, for a description of these circumstances. An FNINIT instruction cannot be
interrupted in this way on a Pentium Pro processor.

In the Intel387 math coprocessor, the FINIT/FNINIT instruction does not clear the instruction and
data pointers.

Operation
FPUControlWord ← 037FH;
FPUStatusWord ← 0;
FPUTagWord ← FFFFH;
FPUDataPointer ← 0;
FPUInstructionPointer ← 0;
FPULastInstructionOpcode ← 0;

FPU Flags Affected
C0, C1, C2, C3 cleared to 0.

Floating-Point Exceptions
None.

Protected Mode Exceptions
#NM EM or TS in CR0 is set.

Real-Address Mode Exceptions
#NM EM or TS in CR0 is set.

Opcode Instruction Description

9B DB E3 FINIT Initialize FPU after checking for pending unmasked
floating-point exceptions.

DB E3 FNINIT* Initialize FPU without checking for pending unmasked
floating-point exceptions.

Intel Architecture Software Developer’s Manual 44-97

F (F2XM1 — FMUL)

Virtual-8086 Mode Exceptions
#NM EM or TS in CR0 is set.

44.20 FIST/FISTP—Store Integer

Description
The FIST instruction converts the value in the ST(0) register to a signed integer and stores the
result in the destination operand. Values can be stored in word- or short-integer format. The
destination operand specifies the address where the first byte of the destination value is to be
stored.

The FISTP instruction performs the same operation as the FIST instruction and then pops the
register stack. To pop the register stack, the processor marks the ST(0) register as empty and
increments the stack pointer (TOP) by 1. The FISTP instruction can also stores values in long-
integer format.

The following table shows the results obtained when storing various classes of numbers in integer
format.

NOTES:
1. FMeans finite-real number.
2. IMeans integer.
3. *Indicates floating-point invalid-operation (#IA) exception.
4. **0 or ±1, depending on the rounding mode.

If the source value is a non-integral value, it is rounded to an integer value, according to the
rounding mode specified by the RC field of the FPU control word.

Opcode Instruction Description

DF /2 FIST m16int Store ST(0) in m16int

DB /2 FIST m32int Store ST(0) in m32int

DF /3 FISTP m16int Store ST(0) in m16int and pop register stack

DB /3 FISTP m32int Store ST(0) in m32int and pop register stack

DF /7 FISTP m64int Store ST(0) in m64int and pop register stack

ST(0) DEST

-• *

−F < −1 −I

−1 < −F < −0 **

−0 0

+0 0

+0 < +F < +1 **

+F > +1 +I

+∞ *

NaN *

44-98 Intel Architecture Software Developer’s Manual

F (F2XM1 — FMUL)

If the value being stored is too large for the destination format, is an ∞, is a NaN, or is in an
unsupported format and if the invalid-arithmetic-operand exception (#IA) is unmasked, an invalid-
operation exception is generated and no value is stored in the destination operand. If the invalid-
operation exception is masked, the integer indefinite value is stored in the destination operand.

Operation
DEST ← Integer(ST(0));
IF instruction = FISTP

THEN
PopRegisterStack;

FI;

FPU Flags Affected
C1 Set to 0 if stack underflow occurred.

Indicates rounding direction of if the inexact exception (#P) is generated: 0 = not
roundup; 1 = roundup.

Cleared to 0 otherwise.

C0, C2, C3 Undefined.

Floating-Point Exceptions
#IS Stack underflow occurred.

#IA Source operand is too large for the destination format

Source operand is a NaN value or unsupported format.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions
#GP(0) If the destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or GS
segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains a null
segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made
while the current privilege level is 3.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS

segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

Intel Architecture Software Developer’s Manual 44-99

F (F2XM1 — FMUL)

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS

segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

44.21 FLD—Load Real

Description
Pushes the source operand onto the FPU register stack. If the source operand is in single- or
double-real format, it is automatically converted to the extended-real format before being pushed
on the stack.

The FLD instruction can also push the value in a selected FPU register [ST(i)] onto the stack. Here,
pushing register ST(0) duplicates the stack top.

Operation
IF SRC is ST(i)

THEN
temp ← ST(i)

TOP ← TOP − 1;
IF SRC is memory-operand

THEN
ST(0) ← ExtendedReal(SRC);

ELSE (* SRC is ST(i) *)
ST(0) ← temp;

FPU Flags Affected
C1 Set to 1 if stack overflow occurred; otherwise, cleared to 0.

C0, C2, C3 Undefined.

Floating-Point Exceptions
#IS Stack overflow occurred.

#IA Source operand is an SNaN value or unsupported format.

#D Source operand is a denormal value. Does not occur if the source operand is in
extended-real format.

Opcode Instruction Description

D9 /0 FLD m32real Push m32real onto the FPU register stack.

DD /0 FLD m64real Push m64real onto the FPU register stack.

DB /5 FLD m80real Push m80real onto the FPU register stack.

D9 C0+i FLD ST(i) Push ST(i) onto the FPU register stack.

44-100 Intel Architecture Software Developer’s Manual

F (F2XM1 — FMUL)

Protected Mode Exceptions
#GP(0) If destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or GS
segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains a null
segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made
while the current privilege level is 3.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS

segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS

segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

44.22 FLD1/FLDL2T/FLDL2E/FLDPI/FLDLG2/FLDLN2/
FLDZ—Load Constant

Opcode Instruction Description

D9 E8 FLD1 Push +1.0 onto the FPU register stack.

D9 E9 FLDL2T Push log210 onto the FPU register stack.

D9 EA FLDL2E Push log2e onto the FPU register stack.

D9 EB FLDPI Push π onto the FPU register stack.

D9 EC FLDLG2 Push log102 onto the FPU register stack.

D9 ED FLDLN2 Push loge2 onto the FPU register stack.

D9 EE FLDZ Push +0.0 onto the FPU register stack.

Intel Architecture Software Developer’s Manual 44-101

F (F2XM1 — FMUL)

Description
Push one of seven commonly used constants (in extended-real format) onto the FPU register stack.
The constants that can be loaded with these instructions include +1.0, +0.0, log210, log2e, π, log102,
and loge2. For each constant, an internal 66-bit constant is rounded (as specified by the RC field in
the FPU control word) to external-real format. The inexact-result exception (#P) is not generated as
a result of the rounding.

See the section titled “Pi”, for a description of the π constant.

Operation
TOP ← TOP − 1;
ST(0) ← CONSTANT;

FPU Flags Affected
C1 Set to 1 if stack overflow occurred; otherwise, cleared to 0.

C0, C2, C3 Undefined.

Floating-Point Exceptions
#IS Stack overflow occurred.

Protected Mode Exceptions
#NM EM or TS in CR0 is set.

Real-Address Mode Exceptions
#NM EM or TS in CR0 is set.

Virtual-8086 Mode Exceptions
#NM EM or TS in CR0 is set.

Intel Architecture Compatibility
When the RC field is set to round-to-nearest, the FPU produces the same constants that is produced
by the Intel 8087 and Intel287 math coprocessors.

44.23 FLDCW—Load Control Word

Description
Loads the 16-bit source operand into the FPU control word. The source operand is a memory
location. This instruction is typically used to establish or change the FPU’s mode of operation.

Opcode Instruction Description

D9 /5 FLDCW m2byte Load FPU control word from m2byte.

44-102 Intel Architecture Software Developer’s Manual

F (F2XM1 — FMUL)

If one or more exception flags are set in the FPU status word prior to loading a new FPU control
word and the new control word unmasks one or more of those exceptions, a floating-point
exception will be generated upon execution of the next floating-point instruction (except for the
no-wait floating-point instructions, see the section titled “Software Exception Handling”). To avoid
raising exceptions when changing FPU operating modes, clear any pending exceptions (using the
FCLEX or FNCLEX instruction) before loading the new control word.

Operation
FPUControlWord ← SRC;

FPU Flags Affected
C0, C1, C2, C3 undefined.

Floating-Point Exceptions
None; however, this operation might unmask a pending exception in the FPU status word. That
exception is then generated upon execution of the next “waiting” floating-point instruction.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS

segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains a null
segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made
while the current privilege level is 3.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS

segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS

segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

Intel Architecture Software Developer’s Manual 44-103

F (F2XM1 — FMUL)

44.24 FLDENV—Load FPU Environment

Description
Loads the complete FPU operating environment from memory into the FPU registers. The source
operand specifies the first byte of the operating-environment data in memory. This data is typically
written to the specified memory location by a FSTENV or FNSTENV instruction.

The FPU operating environment consists of the FPU control word, status word, tag word,
instruction pointer, data pointer, and last opcode. Figures “Protected Mode FPU State Image in
Memory, 32-Bit Format” through “Real Mode FPU State Image in Memory, 16-Bit Format” , show
the layout in memory of the loaded environment, depending on the operating mode of the processor
(protected or real) and the current operand-size attribute (16-bit or 32-bit). In virtual-8086 mode,
the real mode layouts are used.

The FLDENV instruction should be executed in the same operating mode as the corresponding
FSTENV/FNSTENV instruction.

If one or more unmasked exception flags are set in the new FPU status word, a floating-point
exception will be generated upon execution of the next floating-point instruction (except for the
no-wait floating-point instructions, see the section titled “Software Exception Handling”). To avoid
generating exceptions when loading a new environment, clear all the exception flags in the FPU
status word that is being loaded.

Operation
FPUControlWord ← SRC(FPUControlWord);
FPUStatusWord ← SRC(FPUStatusWord);
FPUTagWord ← SRC(FPUTagWord);
FPUDataPointer ← SRC(FPUDataPointer);
FPUInstructionPointer ← SRC(FPUInstructionPointer);
FPULastInstructionOpcode ← SRC(FPULastInstructionOpcode);

FPU Flags Affected
The C0, C1, C2, C3 flags are loaded.

Floating-Point Exceptions
None; however, if an unmasked exception is loaded in the status word, it is generated upon
execution of the next “waiting” floating-point instruction.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS

segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains a null
segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

Opcode Instruction Description

D9 /4 FLDENV m14/28byte Load FPU environment from m14byte or m28byte.

44-104 Intel Architecture Software Developer’s Manual

F (F2XM1 — FMUL)

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made
while the current privilege level is 3.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS

segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS

segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

44.25 FMUL/FMULP/FIMUL—Multiply

Description
Multiplies the destination and source operands and stores the product in the destination location.
The destination operand is always an FPU data register; the source operand can be an FPU data
register or a memory location. Source operands in memory can be in single-real, double-real, word-
integer, or short-integer formats.

The no-operand version of the instruction multiplies the contents of the ST(1) register by the
contents of the ST(0) register and stores the product in the ST(1) register. The one-operand version
multiplies the contents of the ST(0) register by the contents of a memory location (either a real or
an integer value) and stores the product in the ST(0) register. The two-operand version, multiplies
the contents of the ST(0) register by the contents of the ST(i) register, or vice versa, with the result
being stored in the register specified with the first operand (the destination operand).

Opcode Instruction Description

D8 /1 FMUL m32real Multiply ST(0) by m32real and store result in ST(0)

DC /1 FMUL m64real Multiply ST(0) by m64real and store result in ST(0)

D8 C8+i FMUL ST(0), ST(i) Multiply ST(0) by ST(i) and store result in ST(0)

DC C8+i FMUL ST(i), ST(0) Multiply ST(i) by ST(0) and store result in ST(i)

DE C8+i FMULP ST(i), ST(0) Multiply ST(i) by ST(0), store result in ST(i), and pop the
register stack

DE C9 FMULP Multiply ST(1) by ST(0), store result in ST(1), and pop the
register stack

DA /1 FIMUL m32int Multiply ST(0) by m32int and store result in ST(0)

DE /1 FIMUL m16int Multiply ST(0) by m16int and store result in ST(0)

Intel Architecture Software Developer’s Manual 44-105

F (F2XM1 — FMUL)

The FMULP instructions perform the additional operation of popping the FPU register stack after
storing the product. To pop the register stack, the processor marks the ST(0) register as empty and
increments the stack pointer (TOP) by 1. The no-operand version of the floating-point multiply
instructions always results in the register stack being popped. In some assemblers, the mnemonic
for this instruction is FMUL rather than FMULP.

The FIMUL instructions convert an integer source operand to extended-real format before
performing the multiplication.

The sign of the result is always the exclusive-OR of the source signs, even if one or more of the
values being multiplied is 0 or ∞. When the source operand is an integer 0, it is treated as a +0.

The following table shows the results obtained when multiplying various classes of numbers,
assuming that neither overflow nor underflow occurs.

NOTES:
1. FMeans finite-real number.
2. IMeans Integer.
3. *Indicates invalid-arithmetic-operand (#IA) exception.

Operation
IF instruction is FIMUL

THEN
DEST ← DEST ∗ ConvertExtendedReal(SRC);

ELSE (* source operand is real number *)
DEST ← DEST ∗ SRC;

FI;
IF instruction = FMULP

THEN
PopRegisterStack

FI;

FPU Flags Affected
C1 Set to 0 if stack underflow occurred.

Indicates rounding direction if the inexact-result exception (#P) fault is
generated: 0 = not roundup; 1 = roundup.

C0, C2, C3 Undefined.

DEST

-• −F −0 +0 +F +∞ NaN

-• +∞ +∞ * * -• -• NaN

−F +∞ +F +0 −0 −F -• NaN

−I +∞ +F +0 −0 −F -• NaN

SRC −0 * +0 +0 −0 −0 * NaN

+0 * −0 −0 +0 +0 * NaN

+I -• −F −0 +0 +F +∞ NaN

+F -• −F −0 +0 +F +∞ NaN

+∞ -• -• * * +∞ +∞ NaN

NaN NaN NaN NaN NaN NaN NaN NaN

44-106 Intel Architecture Software Developer’s Manual

F (F2XM1 — FMUL)

Floating-Point Exceptions
#IS Stack underflow occurred.

#IA Operand is an SNaN value or unsupported format.

One operand is ±0 and the other is ±∞.

#D Source operand is a denormal value.

#U Result is too small for destination format.

#O Result is too large for destination format.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS

segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains a null
segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made
while the current privilege level is 3.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS

segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS

segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

